
CEWES MSRC/PET TR/98-05

Using the MPE Graphics Library with Fortran90

by

S. W. Bova
Clay P. Breshears

02h00298

Work funded by the DoD High Performance Computing
Modernization Program CEWES
Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC 94-96-C0002
Nichols Research Corporation

Views, opinions, and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of Defense Position, policy, or decision unless so designated by
other official documentation.

Using the MPE Graphics Library with Fortran90

S.W. Bova� Clay P. Breshearsy

March 13, 1998

1 Introduction

The MPE graphics library is part of the MPICH package distributed by Argonne National
Laboratory. \It consists of functions that are not in MPI; consistent in style with MPI;
freely available; and in the long run will work with any MPI implementation" [1]. This
graphics library gives the MPI programmer an easy-to-use, minimal set of routines that can
asynchronously draw color graphics to an X11 window during the course of a numerical
simulation. Unfortunately, there is little scienti�c visualization software written for MPE,
which places a high burden on the applications programmer. This di�culty is compounded
by a dearth of documentation on the library. On the other hand, the library is small and has
a shallow learning curve. This report is a brief description of how these graphics routines
may be called from a Fortran90 program, written from the perspective of a �nite element
applications programmer. It was written after gaining one week of experience in the use of
the MPE graphics library, thereby demonstrating that the library is compact enough to be
easily used if the applications programmer is familiar with graphics programming. A goal
of this report is to make the package equally useful to those programmers who are not as
familiar with graphics programming. Note it is not the intent of this report to provide a
complete programmer's guide to the MPE library.

The discussion begins in Section 2 with a description of some of the library functions.
Next, Section 3 describes a Fortran90 module which uses these routines to draw colored
contour plots for two-dimensional, unstructured grids. Section 4 presents an overview on
methods and software which can be used to save the graphics for later viewing. Finally,
a summary of this report is presented in Section 5 with instructions on how to obtain the
module and the MPE graphics library.

2 MPE Graphics Library

In this section, a brief discussion of a subset of the MPE graphics library is presented. For
the details of the bindings, refer to the Unix man pages which are included in the MPE
distribution. Portability issues are also discussed.

�CEWES MSRC On-site CFD Lead for PET, Mississippi State University
yCEWES MSRC On-site Parallel Tools Lead for PET, Rice University

Using the MPE Graphics Library

MPE Open graphics() MPE Draw circle()

MPE CaptureFile() MPE Add RGB color()

MPE Close graphics() MPE Draw point()

MPE Update() MPE Draw points()

MPE Draw line() MPE Draw logic()

MPE Make color array() MPE Fill circle()

MPE Line thickness() MPE Fill rectangle()

MPE Num colors()

Table 1: MPE graphics routines that have Fortran bindings.

2.1 MPE Graphics Routines

The routines given in Table 1 have Fortran bindings and are available in the current release
of MPE graphics. The �rst six of these routines in the left-hand column were used in the
Fortran90 module described in Section 3. The purpose of most of the routines should be ob-
vious from their names. The routine MPE Open graphics() should always be called �rst. It
initializes the system and opens a window on a speci�ed X11 display. The last routine called
should be MPE Close graphics(), which gracefully shuts down the X11 window. A color
map may be easily de�ned with MPE Make color array(). This routine returns color indices
in a prede�ned spectrum. (Arbitrary colors may be de�ned using MPE Add RGB color(), but
this is not necessary if the colors returned by MPE Make color array() are satisfactory.)
Lines between two points are drawn with MPE Draw line(). The purpose of MPE Update()

is perhaps not as obvious. Graphics requests are bu�ered in order to improve performance.
A call to MPE Update()
ushes the graphics bu�er and ensures that objects which are
drawn are actually displayed in the X11 window. Finally, it may be desirable to capture
the contents of the X11 window in an image �le on disk. This action is toggled by calling
MPE Capturefile() which uses the X11 utility xwd. One of the required arguments is a
frequency parameter; e.g. if this parameter is equal to two, then an image will be captured
every other time MPE Update() is called.

The following two routines, along with their Fortran bindings, were added for the
present work and are not contained in the current MPE release: MPE Fill triangle()

and MPE Fill polygon(). Since these routines are not part of the MPE library, their For-
tran and C bindings are given in Figures 1 and 2, respectively. These routines were written
because they were required by the contour shading algorithm implemented in the Fortran90
module. It was a relatively simple matter to write these two functions because they are
essentially just wrappers around functions contained in the X11 graphics library. Finally,
there are a few routines which are available in the MPE library but currently do not have
Fortran bindings. These routines provide functionality for drawing character strings and
providing input via the mouse.

2.2 Portability and Language Compatability Issues

In general, the MPE graphics library is portable. Unfortunately for the Fortran programmer,
the main sources of dependency on a speci�c operating system are found in the Fortran

3 of 22

Using the MPE Graphics Library

subroutine MPE_Fill_polygon(handle, nvertx, x, y, color, mpe_err)

integer handle ! handle for MPE X11 window

integer nvertx ! number of vertices in polygon

integer, dimension(nvertx):: x, y ! screen coordinates of vertices

integer color ! color with which to fill polygon

integer mpe_err ! MPE error code

subroutine MPE_Fill_triangle(handle, x1, y1, x2, y2, x3, y3, &

color, mpe_err)

integer handle ! handle for MPE X11 window

integer x1, y1, x2, y2, x3, y3 ! triangle vertices

integer color ! color with which to fill triangle

integer mpe_err ! MPE error code

Figure 1: Fortran bindings for the new MPE graphics routines.

int MPE_Fill_polygon(handle, nvertx, x, y, color)

MPE_XGraph handle;

int *x, *y;

int nvertx;

MPE_Color color;

int MPE_Fill_triangle(handle, x1, y1, x2, y2, x3, y3, color)

MPE_XGraph handle;

int x1, y1, x2, y2, x3, y3;

MPE_Color color;

Figure 2: C bindings for the new MPE graphics routines.

4 of 22

Using the MPE Graphics Library

Fortran C
Unicos M/K AIX IRIX

call foo() void FOO() void foo() void foo ()

Table 2: How to name a C function when called from Fortran.

bindings. For example, Table 2 illustrates how a C function must be named on di�erent
platforms when called from Fortran. Note that the C compiler is sensitive to the text
case (i.e. upper or lower) and sometimes the Fortran compiler appends an underscore to
the function name. Another source of dependency is associated with the fact that the
Fortran language speci�es call-by-reference, whereas C speci�es call-by-value when passing
arguments. In other words, an argument to a C function is always a value, whereas an
argument to a Fortran subroutine is always an address to a value. This means that the
arguments to a C function which is called from Fortran must always be a pointer, so that
it represents an address that can be passed by Fortran.

A portability issue arises when a pointer is converted to an integer (e.g., for passing the
graphics handle back to the Fortran caller, as is done in the MPE Open graphics() function).
Under the 64-bit IRIX ABI, a long int is required to hold the address contained in a
pointer. On other operating systems, a standard int may su�ce.

Finally, there is an include �le, mpef.h, which contains parameter de�nitions required
by the MPE library. At the time of this writing, the �le which is included in the o�cial
distribution is not compatible with both free-form Fortran90 and old-style, �xed-form For-
tran77 source �les. The modi�cations to remedy this are simple, and consist of altering the
comment and line continuation syntax. A modi�ed version of this �le is included with the
module distribution.

The relationship of the MPE graphics library with a �nite element application, MPI, and
the X11 library is illustrated schematically in Figure 3. At the lowest level, the X11 system
library is called by the MPE routines to perform the actual drawing and display. The MPI
message-passing library may be needed at more than one level. First, it is needed at the
highest level by the �nite element application to perform the communication required for the
simulation. Next, it may be required by the solution contour calculator in order to determine
a global bounding box for the simulation domain, solution extrema, etc. (This is somewhat
of a philosophical issue. In the module described in this report, this communication is
performed by the �nite element application and is passed to the contour calculator.) Finally,
MPI is not currently required by the MPE graphics library but may be in the future in order
to support collective operations [2].

3 A Fortran90 module

The module described in this work, mpe gfx.f90 is presented as a simple example of how to
use the MPE graphics library. It is hoped that it will be deemed useful to other applications
programmers, either in and of itself or as a template for the construction of other modules.
Towards this end, the complete module is listed in the Appendix. The problem statement
that the module addresses is as follows: given a scalar �eld de�ned on an unstructured, two-

5 of 22

Using the MPE Graphics Library

X11 system

library

MPE_graphics

application

finite element

MPI library

to MPE_graphics

Fortran binding

calculator

solution contour

Figure 3: Relationship of MPE graphics library with other application components.

6 of 22

Using the MPE Graphics Library

dimensional, triangular mesh which is distributed among many processors, draw a colored
contour representation of the associated surface. This plot could be drawn at every time step
of a distributed-memory, time-dependent calculation in order to observe the time evolution
of the solution as it is calculated.

There are two user-de�ned, integer parameters which must be set at compile time. The
�rst, rkind, is the Fortran90 \kind" to be used for real data. For example, set kind = 8 to
obtain 64-bit real variables. The second parameter, mpe screen max, de�nes the maximum
edge length (in pixels) of the X-window in which the plot will be drawn.

The module has three subroutines which may be called by the user: init mpe gfx(),
finish mpe gfx(), and mpe cnt(). The bindings for these routines are given in Figure 4.

Subroutine init mpe gfx() is a wrapper around MPE Open graphics(), and also per-
forms some preprocessing. The basic algorithm is as follows:

1. obtain the X-window DISPLAY environment variable

2. compute size of X-window in which to display plot

3. allocate integer arrays to store the screen coordinates

4. convert from real-valued (x; y) coordinates to screen coordinates

5. call MPE Open graphics()

6. optionally call MPE Capturefile()

The X-window size in step 2 above is determined from the value of mpe screen max and
the computed aspect ratio of the given domain. The allocated arrays in step 3 are de�ned
in the module header as private, so that they cannot be accessed by routines outside of
the module. The call to MPE Open graphics() actually opens the X-window on the display
screen.

Next, the main routine is mpe cnt(), which performs the following steps:

1. allocate array to hold color map

2. call MPE Make color array()

3. �ll X-window with white

4. draw mesh boundaries

5. loop over each triangle

(a) loop over the contour values

(b) set color for this contour

(c) draw contours for this triangle

6. call MPE Update()

7 of 22

Using the MPE Graphics Library

subroutine init_mpe_gfx(capture, npoints, comm, myid, x, y, &

xmin, ymin, xmax, ymax)

logical capture ! if true, then capture plots to files

integer npoints ! local number of grid points

integer comm ! MPI communicator.

integer myid ! rank of this process.

real(kind=rkind), dimension(npoints):: x,y ! real coords of local grid

real(kind=rkind):: xmin, xmax, ymin, ymax ! bounding box of global grid

subroutine mpe_cnt(ifill, npoin, ntri, nedge, nvalues, elist, &

nodes, prop, testval)

integer ifill ! if 0 draw colored lines, else

! draw color-filled plot

integer npoin ! number of points in local grid

integer ntri ! number of triangles in local grid

integer nedge ! number of boundary edges in local grid

integer nvalues ! number of contour values to draw.

real(kind=rkind):: prop(npoin) ! array to contour

integer:: nodes(3,ntri) ! triangle list

integer:: elist(2,nedge) ! boundary edge list

real(kind=rkind):: testval(nvalues) ! contour values to test for

subroutine finish_mpe_gfx

!note: no arguments.

Figure 4: Fortran90 bindings for user-callable routines in the module, listed in the order in
which they should be called.

In step 3 above, the window is painted white in order to clear the plot from a previous time
step. The contours may be drawn in step 5c in one of two ways: either as colored contour
lines or as color-�lled polygons. This action is determined at runtime via an argument
of mpe cnt(). The contour algorithm is very simple: for each triangle in the mesh, the
property values at the vertices are compared with each of the given contour values. The
color is set according to the active contour value, and contours are drawn if the test value
lies between two vertex values. A call to MPE Update() after each processor has drawn its
portion of the domain ensures that the plot bu�er is
ushed before the next timestep.

After all plots have been made, a call to finish mpe gfx() deallocates the screen coor-
dinate arrays and closes the plot window by a call to MPE Close graphics().

8 of 22

Using the MPE Graphics Library

4 Image Conversions

As stated above, the MPE Capturefile() routine is used to determine if displayed images
will be saved to individual �les in the xwd format. Since it may require several hours of
compute time in order to complete a program's execution, having such a record of graphical
output would allow a post mortem review of generated data. There are many tools and
programs available that are able to view the xwd format and these may be su�cient.

However, if you are unable to view xwd �les, the following subsections give several pos-
sible methods of converting these �les to a desirable and compatible format. Descrip-
tions and examples of two major tools, namely dmconvert and the Image Tools suite, will
be given. The former is a standard utility available on SGI workstations and the lat-
ter is available from the San Diego Supercomputer Center (SDSC) by anonymous FTP
at ftp://ftp.sdsc.edu/pub/sdsc/graphics/imtools/ in source or pre-compiled binary
form. Full details of all the tools discussed below are available within man pages.

For sake of example, we shall assume that twenty xwd �les have been generated. These
�les are named flick000.xwd, flick001.xwd, : : :, flick019.xwd.

4.1 Converting Single Images

4.1.1 dmconvert

The dmconvert utility on SGI workstations is able to convert between 38 di�erent graph-
ical image formats. There are restrictions on some formats which only allow them to be
exclusively used as either input or output. These restrictions are noted on the man page for
dmconvert.

The command to convert the �rst example xwd �le into a GIF �le would be,

dmconvert -f gif -p video flick000.xwd flick000.gif

where the -f gif denotes the image format type to be converted to, -p video denotes the
track type to convert (audio is the other possibility), and flick000.xwd and flick000.gif

are the input and output �les, respectively.
One caveat that must be mentioned: in our experiments with the dmconvert utility, all

converted �les came out in grayscale. That is, while the xwd �le had all the colors present
that were displyed during program execution, after running them through the conversion
process, the �les were rendered in black, white and shades of gray. We remark that some
combination of command line options currently unknown to us may correct this problem.

4.1.2 imconv

The imconv tool within the SDSC Image Tools suite supports slightly fewer image formats
than dmconvert. (The imformats utility is used to list out all available formats.) However,
in our experiments with the suite, all of the target image conversions from the xwd format
were able to preserve the colors found in the original image.

The command to convert the �rst example xwd �le into a GIF �le would be,

imconv -infile flick000.xwd -outfile flick000.gif

9 of 22

Using the MPE Graphics Library

where -infile and -outfile are optional and would only be needed if the input and output
�le names were embedded within a list of command line arguments.

4.2 Converting Multiple Images

4.2.1 imcat

The imcat utility concatenates multiple image �les into a single �le. Most likely, the format
for such a target �le will be Tagged Image File Format (tiff) or Hierarchical Data File
(hdf). The command to concatenate all of the example xwd �les into a TIFF �le would be,

imcat -frames 0-19 flick%03d.xwd -outfile flicks.tiff

where -frames 0-19 flick%03d.xwd is an example of the implicit �le naming scheme used
in utilities of the Image Tools suite. This implicit naming convention is described in more
detail below.

4.2.2 imstoryboard

The imstoryboard is able to arrange a set of image �les into a single image �le. Individual
input images are placed into a storyboard (or grid) ordering within the output �le. This
output would be useful to view an entire set of generated images and also be able to track
the progression of images through time.

The command to create a GIF storyboard containing the complete set of example xwd
�les would be,

imstoryboard -frames 0-19 flick%03d.xwd -outfile flickstory.gif

where -frames 0-19 flick%03d.xwd is an example of the implicit �le naming scheme.
There are additional
ags and command arguments that control the size, shape and place-
ment of images within the grid framework.

The special character code \%d" is used to de�ne a multiple �le name template in
some of the Image Tools utilities. This code, much like the C language printf output edit
descriptor, is replaced by the range of numbers speci�ed in the -frames argument. The
number of digits used in this replacement is controllable by the user. For example, the %03d
used above speci�es a zero-�lled, three-digit output. This corresponds to the �le names of
the example input image �les.

4.2.3 Making Movies

Besides converting from one image format to another, the dmconvert tool is able to con-
catenate multiple images into a an animated presentation. Thus, it would be possible to
convert the entire set of example xwd image �les into either an AVI, MPEG, QuickTime or
SGI movie format. However, in our experiments with the dmconvert utility, we were unable
to create converted �les with the colors contained in the original xwd �les.

We were able to convert color rgb �les from imconv and use dmconvert to create a color
movie �le. The following process would be used to make a MPEG movie of all the example
xwd �les:

10 of 22

Using the MPE Graphics Library

#/bin/csh -f

foreach file (*.xwd)

set rootname=$file:r

imconv $rootname.xwd $rootname.rgb

end

Figure 5: xwd to rgb conversion script

1. Convert all xwd �les to rgb �les. Since the imconv can only work with a single input
and output �le at one time, the script �le shown in Figure 5 , when executed, will
convert all �les su�xed with xwd into correspondingly named rgb �les.

2. Convert all rgb �les to a single MPEG movie �le. the command to do this would be,

dmconvert -f mpeg1v -p video flick0##.rgb flick.mpg

where flick0##.rgb is a template for multiple �les named with a sequential num-
bering scheme. The string of \#" characters in the template indicates the maximum
size of the �eld to replaced by integers in sequence, left-padded with zeros to the �eld
length, starting at zero (0) and incremented by one (1). These sequential �le names
are used in numerical order until no more �les match the template. Thus, the template
given above would match the �les flick000.rgb to flick099.rgb.

5 Summary

A brief description of how the MPE graphics library may be used to observe the time
evolution of a distributed-memory, MPI-based simulation has been presented. The MPE
library is small, and is therefore relatively easy to learn. In particular, a Fortran90 module
which draws contours of a three-dimensional surface on unstructured triangular meshes has
been written as an example. This module, which is listed in the Appendix, is available
at http://www.erc.msstate.edu/~swb/Tools. A brief overview on image �le conversion
and animation has also been presented. In particular, we have described how xwd image
�les which were obtained via the MPE Capturefile() function may be animated for later
viewing.

A potentially interesting application of this library lies in the area of remote visualiza-
tion. Because the drawing primitives are based on the ubiquitous X11 system, they can be
displayed on practically any hardware. The X11 library has been ported to both Macin-
tosh and Intel-based personal computers, and is included with virtually all Unix operating
systems. Furthermore clients can be reasonably displayed over telephone connections with
modern, high-speed (e.g. 19,200 baud) modems.

It is unfortunate that there is so little documentation on the MPE library. If a user's
guide were included with the distribution, or made available at the MPICH homepage
(http://www.mcs.anl.gov/mpi/mpich), then we believe that the existence and utility of
this library would be more widely appreciated.

11 of 22

Using the MPE Graphics Library

References

[1] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel

Programming with the Message-Passing Interface. MIT Press, London, 1994.

[2] MPE open graphics unix man page. MPE Graphics Library Unix Programmer'sManual.

12 of 22

Using the MPE Graphics Library

Appendix

module mpe_gfx

implicit none

include 'mpef.h'

integer, parameter :: rkind = 8 ! kind of real data

integer, private, parameter :: mpe_screen_max = 1000 ! max window edge length

! ---

! end of user-initialized data

integer, private :: mpe_comm ! MPI communicator.

integer, private :: mpe_myid ! rank of this process.

integer, private :: l_winx ! length of window in x

integer, private :: l_winy ! length of window in y

integer mpe_err ! error code from mpe package

real(kind = rkind), private :: gxmin, gxmax, gymin, gymax ! bounding box of

! global grid

integer (kind = 8), private :: mpe_handle ! graphics handle for

! MPE gfx routines.

integer, private, allocatable, dimension(:) :: mpe_xs !screen x-coords

integer, private, allocatable, dimension(:) :: mpe_ys !screen y-coords

contains

! begin init_mpe_gfx

subroutine init_mpe_gfx(capture, npoints, comm, myid, &

x, y, xmin, ymin, xmax, ymax)

logical capture ! if true, then capture plots to files

integer npoints ! local number of grid points

integer comm ! MPI communicator.

integer myid ! rank of this process.

real(kind = rkind), dimension(npoints) :: x,y ! real coords of local grid

real(kind = rkind) :: xmin, xmax, ymin, ymax ! bounding box of global grid

real(kind = rkind) :: xdis, ydis

character(len=81) :: xdisplay ! DISPLAY environment variable

gxmin = xmin

gymin = ymin

gxmax = xmax

gymax = ymax

mpe_comm = comm

mpe_myid = myid

! allocate the screen coordinate arrays

13 of 22

Using the MPE Graphics Library

allocate(mpe_xs(npoints), mpe_ys(npoints))

! get the xwindow DISPLAY environment variable

call getenv("DISPLAY", xdisplay)

xdisplay = trim(xdisplay)//char(0) ! append the null character for C

! transform from physical coordinates to screen coordinates

xdis = gxmax - gxmin

ydis = gymax - gymin

! figure the X window sizes

if(xdis > ydis) then

l_winx = mpe_screen_max

l_winy = ydis*l_winx/xdis

else

l_winy = mpe_screen_max

l_winx = xdis*l_winy/ydis

end if

mpe_xs(1:npoints) = (x(1:npoints) - gxmin)/xdis*l_winx

mpe_ys(1:npoints) = (y(1:npoints) - gymin)/ydis*l_winy

l_winx = 1.1*l_winx

l_winy = 1.1*l_winy

! open the mpe gfx package

call mpe_open_graphics(mpe_handle,mpe_comm, xdisplay, &

-1,-1, l_winx, l_winy, 0, mpe_err)

if(capture) call MPE_Capturefile(mpe_handle, "flick",1,mpe_err)

end subroutine init_mpe_gfx

! begin finish_mpe_gfx

subroutine finish_mpe_gfx

deallocate(mpe_xs,mpe_ys)

call mpe_close_graphics(mpe_handle,mpe_err)

end subroutine finish_mpe_gfx

! begin mpe_cnt

subroutine mpe_cnt(ifill, npoin, ntri, nedge, nvalues, elist, &

nodes, prop, testval)

integer ifill ! if 0 draw colored lines, else

! draw color-filled plot

integer npoin ! number of points in local grid

integer ntri ! number of triangles in local grid

integer nedge ! number of boundary edges in local grid

14 of 22

Using the MPE Graphics Library

integer nvalues ! number of countour values to draw.

real(kind=rkind) :: prop(npoin) ! array to contour

integer :: nodes(3,ntri) ! triangle list

integer :: elist(2,nedge) ! boundary edge list

real(kind=rkind) :: testval(nvalues) ! contour values to test for

!---

! Local Variables:

real(kind=rkind) :: aaa(3)

integer li, lo

real(kind=rkind) :: xmin, xmax, ymin, ymax, pmin, pmax

real(kind=rkind) :: xmin1, xmax1, ymin1, ymax1

real(kind=rkind) :: percent, xdis, ydis

integer ileft, iright, ibot, itop

integer icnt, ie

integer ip1, ip2, ip3

real(kind=rkind) :: slope

real(kind=rkind) :: xstr, ystr, dystr

integer leng

character*40 string

integer ichrlen

integer shade

integer xtri(3), ytri(3)

integer, allocatable, dimension(:) :: colours ! color array

pmin = minval(prop(1:npoin))

pmax = maxval(prop(1:npoin))

! figure testvalues

if (nvalues .lt. 0) then

nvalues = -nvalues

end if

allocate(colours(0:nvalues))

! clear the screen

if(0 == ifill .and. 0 == mpe_myid) then

call MPE_Fill_rectangle(mpe_handle, 0, 0, l_winx, l_winy, &

MPE_WHITE, mpe_err)

call mpe_update(mpe_handle,mpe_err)

end if

! set the colormap

call MPE_Make_color_array(mpe_handle, nvalues, colours, mpe_err)

if(mpe_err /= 0)then

write(*,*)'mpe_err: ',mpe_err

end if

! draw in the boundaries

15 of 22

Using the MPE Graphics Library

do ie = 1, nedge

ip1 = elist(1,ie)

ip2 = elist(2,ie)

! draw the edge

call MPE_Draw_line(mpe_handle, mpe_xs(ip1), mpe_ys(ip1), &

mpe_xs(ip2), mpe_ys(ip2), MPE_BLACK, mpe_err)

end do

! loop over the elements

if(0 == ifill) then

do ie = 1, ntri

! get the index of each node

ip1 = nodes(1,ie)

ip2 = nodes(2,ie)

ip3 = nodes(3,ie)

xtri(1) = mpe_xs(ip1)

ytri(1) = mpe_ys(ip1)

aaa(1) = prop(ip1)

xtri(2) = mpe_xs(ip2)

ytri(2) = mpe_ys(ip2)

aaa(2) = prop(ip2)

xtri(3) = mpe_xs(ip3)

ytri(3) = mpe_ys(ip3)

aaa(3) = prop(ip3)

call cline(aaa,xtri,ytri,testval,nvalues,colours)

end do

else

do ie = 1, ntri

! get the index of each node

ip1 = nodes(1,ie)

ip2 = nodes(2,ie)

ip3 = nodes(3,ie)

xtri(1) = mpe_xs(ip1)

ytri(1) = mpe_ys(ip1)

aaa(1) = prop(ip1)

xtri(2) = mpe_xs(ip2)

ytri(2) = mpe_ys(ip2)

aaa(2) = prop(ip2)

xtri(3) = mpe_xs(ip3)

ytri(3) = mpe_ys(ip3)

aaa(3) = prop(ip3)

call cfill(aaa,xtri,ytri,testval,nvalues,colours)

end do

end if

call mpe_update(mpe_handle,mpe_err)

end subroutine mpe_cnt

! begin cline

16 of 22

Using the MPE Graphics Library

subroutine cline(aaa,xtri,ytri,testval,nval1,colours)

! This routine finds all the color contours for a triangle.

! This routine was written by modifying the above QTRIANG.

! The difference is that it generates standard contour lines instead

! of colored polygons.

! This is done by finding the number of intersections at each side

! then do the following:

! CASE 1: No intersection -> do nothing

! CASE 2: One intersection -> do nothing

! CASE 3: Two intersection or if two nodes have same value ->

! plot the line

! CASE 4: Three intersection ->

! Find the duplicate pt and plot the other two

! CASE 5: All three nodes are the same value and are approximately

! the same as a testvalue

! variables

! aaa(3) - scalar values of the triangle

! xtri(3),ytri(3) - the coordinates of the triangle

! xint(2),yint(2) - intersections along a side

! val(2) - values found at the intersection-aal 2/25/91:not used anymore

! testval(nval1) - values to test for intersections

! inod - start node for a side

! jnod - end node for at side

! ival - the number of the contour

! nval - max number of contours

! nval1 - input max number of contours

! nint - the number of intersections found along a side

! v1,v2 - values at the vertices along a side

! vmax,vmin - the min and max contour values

! dv - difference between v1 and v2

integer colours(*)

integer nval1

real(kind=rkind) aaa(3)

integer xtri(3),ytri(3),xint(3),yint(3)

real(kind=rkind) testval(nval1),v1,v2,dv

integer inod,jnod,ival,nint,nval

! check to see if nval1 is o.k.

nval = nval1

if (1 == nval) nval = 2

do ival = 1,nval

! check all 3 nodes of triangle for intersections

!

17 of 22

Using the MPE Graphics Library

nint = 0

do inod = 1,3

jnod = mod(inod,3)+1

v1 = aaa(inod)

v2 = aaa(jnod)

if((abs(v1-v2) <= 1.0e-07) .and. &

(abs(v1-testval(ival)) <= 1.e-07)) then

! set the proper color

call MPE_Draw_line(mpe_handle, xtri(inod), ytri(inod), &

xtri(jnod), ytri(jnod), colours(ival), mpe_err)

exit

end if

if ((v1-testval(ival))*(testval(ival)-v2) > 0.0) then

nint = nint + 1

dv = v2 - v1

if (abs(dv) > 1.e-08*testval(ival)) then

xint(nint) = xtri(inod) + (testval(ival)-v1)/dv * &

(xtri(jnod) - xtri(inod))

yint(nint) = ytri(inod) + (testval(ival)-v1)/dv * &

(ytri(jnod) - ytri(inod))

end if

endif

end do

! Now evaluate cases

! case 1 - no intersections:do nothing

! case 2 - 1 intersection:do nothing

! case 3 - 2 intersections: plot the line

if(nint==2) then

! set the proper color

call MPE_Draw_line(mpe_handle, xint(1),yint(1), &

xint(2),yint(2), colours(ival), mpe_err)

endif

! case 4 - three intersections:find duplicate point

! and plot the other two.

99 continue

if(nint==3) then

if(xint(1)/=xint(2) .and. yint(1)/=yint(2)) then

call MPE_Draw_line(mpe_handle, xint(1),yint(1), &

xint(2),yint(2), colours(ival), mpe_err)

else

18 of 22

Using the MPE Graphics Library

call MPE_Draw_line(mpe_handle, xint(1),yint(1), &

xint(3),yint(3), colours(ival), mpe_err)

endif

end if

! call mpe_update(mpe_handle,mpe_err)

end do

end subroutine cline

! begin cfill

subroutine cfill(aaa,xtri,ytri,testv,nval1,colours)

! This routine finds all the color contours for a triangle.

! This is done by finding the number of intersections at each side

! then do the following:

! CASE 1: No intersection -> do nothing

! CASE 2: No intersection but side is in range ->

! get both vertices from triangle in directed order

! CASE 3: Two intersection ->

! decide if in directed order

! CASE 4: One intersection ->

! get correct vertex from triangle

! decide if in directed order

! Directed order means that the vertices of the polygon for the color

! contour are in the same direction as the triangle. This is to avoid

! getting Z's rather than rectangles.

! variables

! aaa(3) - scalar values of the triangle

! xtri(3),ytri(3) - the coordinates of the triangle

! xver(6),yver(6) - the coordinates of the polygon for the color contour

! xint(2),yint(2) - intersections along a side

! val(2) - values found at the intersection

! testval(2) - values to test for intersections

! inod - start node for a side

! jnod - end node for at side

! ival - the number of the contour

! nval - max number of contours

! nval1 - input max number of contours

! nint - the number of intersections found along a side

! v1,v2 - values at the vertices along a side

! vmax,vmin - the min and max contour values

! dv - difference between v1 and v2

! ja - counter for intersection checking

! nver - the number of vertices for the polygon for the color contour

! ordered - if the intersection locations are in directed order

! found - if there are intersection found along a side

19 of 22

Using the MPE Graphics Library

integer colours(*)

integer inod,jnod,ival,nint,nval,nval1,nver,ja

integer istart,iend

logical ordered,found

real(kind=rkind) aaa(3)

integer xtri(3),ytri(3),xint(2),yint(2), xver(6), yver(6)

real val(2),testval(2),v1,v2,dv

!!aal 10/18/90 added testv dimensioned at nval

real(kind=rkind) testv(nval1)

!!aal 10/18/90

! check to see if nval1 is o.k.

nval = nval1

if (nval == 1) nval = 2

do ival = 1,nval-1

testval(1) = testv(ival)

testval(2) = testv(ival+1)

! testval(1) = vmin + float(ival-1)/float(nval-1)*(vmax-vmin)

! testval(2) = vmin + float(ival)/float(nval-1)*(vmax-vmin)

nver = 0

do inod = 1,3

nint = 0

jnod = mod(inod,3)+1

v1 = aaa(inod)

v2 = aaa(jnod)

found = .false.

do ja = 1,2

if ((v1-testval(ja))*(testval(ja)-v2) > 0.0) then

found = .true.

nint = nint + 1

val(nint) = testval(ja)

dv = v2 - v1

if (abs(dv) < 1.e-6*testval(ja)) dv = 1.0

xint(nint) = xtri(inod) + (testval(ja)-v1)/dv * &

(xtri(jnod) - xtri(inod))

yint(nint) = ytri(inod) + (testval(ja)-v1)/dv * &

(ytri(jnod) - ytri(inod))

endif

end do

! Now evaluate cases

! CASE 1 and 2: No intersections

if (nint == 0) then

! check if start node is in range (CASE 2)

if ((testval(1)-v1)*(v1-testval(2)) >= 0.0) then

! case 2 side in range

ordered = .true.

20 of 22

Using the MPE Graphics Library

found = .true.

xint(1) = xtri(inod)

yint(1) = ytri(inod)

xint(2) = xtri(jnod)

yint(2) = ytri(jnod)

endif

! CASE 1 -> do nothing

! CASE 3 - Two intersections so check to see if ordered.

else if (nint == 2) then

ordered = abs(v1-val(1)) < abs(v1-val(2))

! CASE 4 - One intersection

else if ((testval(1)-v1)*(v1-testval(2)) >= 0.0) then

ordered = .false.

xint(2) = xtri(inod)

yint(2) = ytri(inod)

else

ordered = .true.

xint(2) = xtri(jnod)

yint(2) = ytri(jnod)

endif

! if intersection were found then store vertices in ver

! check to see if istart is a new vertex.

if (found) then

istart = 2

iend = 1

if (ordered) then

istart = 1

iend = 2

endif

if ((nver == 0) .or. ((xver(nver) /= xint(istart)) &

.or. (yver(nver) /= yint(istart)))) then

nver = nver + 1

xver(nver) = xint(istart)

yver(nver) = yint(istart)

endif

nver = nver + 1

xver(nver) = xint(iend)

yver(nver) = yint(iend)

endif

end do

if (nver > 0) then

if ((xver(1)==xver(nver)) .and. (yver(1)==yver(nver))) &

nver = nver - 1

call mpe_fill_polygon(mpe_handle, nver, xver,yver, &

colours(ival), mpe_err)

21 of 22

Using the MPE Graphics Library

endif

end do

end subroutine cfill

end module mpe_gfx

22 of 22

Work funded by the DoD High Performance Computing

Modernization Program CEWES

Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC 94-96-C0002
Nichols Research Corporation

Views, opinions, and/or �ndings contained in this report are those of the au-
thor(s) and should not be construed as an o�cial Department of the Defense
position, policy, or decision unless so designated by other o�cial documenta-
tion.

Using the MPE Graphics Library with Fortran90

S.W. Bova� Clay P. Breshearsy

March 13, 1998

1 Introduction

The MPE graphics library is part of the MPICH package distributed by Argonne National
Laboratory. \It consists of functions that are not in MPI; consistent in style with MPI;
freely available; and in the long run will work with any MPI implementation" [1]. This
graphics library gives the MPI programmer an easy-to-use, minimal set of routines that can
asynchronously draw color graphics to an X11 window during the course of a numerical
simulation. Unfortunately, there is little scienti�c visualization software written for MPE,
which places a high burden on the applications programmer. This di�culty is compounded
by a dearth of documentation on the library. On the other hand, the library is small and has
a shallow learning curve. This report is a brief description of how these graphics routines
may be called from a Fortran90 program, written from the perspective of a �nite element
applications programmer. It was written after gaining one week of experience in the use of
the MPE graphics library, thereby demonstrating that the library is compact enough to be
easily used if the applications programmer is familiar with graphics programming. A goal
of this report is to make the package equally useful to those programmers who are not as
familiar with graphics programming. Note it is not the intent of this report to provide a
complete programmer's guide to the MPE library.

The discussion begins in Section 2 with a description of some of the library functions.
Next, Section 3 describes a Fortran90 module which uses these routines to draw colored
contour plots for two-dimensional, unstructured grids. Section 4 presents an overview on
methods and software which can be used to save the graphics for later viewing. Finally,
a summary of this report is presented in Section 5 with instructions on how to obtain the
module and the MPE graphics library.

2 MPE Graphics Library

In this section, a brief discussion of a subset of the MPE graphics library is presented. For
the details of the bindings, refer to the Unix man pages which are included in the MPE
distribution. Portability issues are also discussed.

�CEWES MSRC On-site CFD Lead for PET, Mississippi State University
yCEWES MSRC On-site Parallel Tools Lead for PET, Rice University

Using the MPE Graphics Library

MPE Open graphics() MPE Draw circle()

MPE CaptureFile() MPE Add RGB color()

MPE Close graphics() MPE Draw point()

MPE Update() MPE Draw points()

MPE Draw line() MPE Draw logic()

MPE Make color array() MPE Fill circle()

MPE Line thickness() MPE Fill rectangle()

MPE Num colors()

Table 1: MPE graphics routines that have Fortran bindings.

2.1 MPE Graphics Routines

The routines given in Table 1 have Fortran bindings and are available in the current release
of MPE graphics. The �rst six of these routines in the left-hand column were used in the
Fortran90 module described in Section 3. The purpose of most of the routines should be ob-
vious from their names. The routine MPE Open graphics() should always be called �rst. It
initializes the system and opens a window on a speci�ed X11 display. The last routine called
should be MPE Close graphics(), which gracefully shuts down the X11 window. A color
map may be easily de�ned with MPE Make color array(). This routine returns color indices
in a prede�ned spectrum. (Arbitrary colors may be de�ned using MPE Add RGB color(), but
this is not necessary if the colors returned by MPE Make color array() are satisfactory.)
Lines between two points are drawn with MPE Draw line(). The purpose of MPE Update()

is perhaps not as obvious. Graphics requests are bu�ered in order to improve performance.
A call to MPE Update()
ushes the graphics bu�er and ensures that objects which are
drawn are actually displayed in the X11 window. Finally, it may be desirable to capture
the contents of the X11 window in an image �le on disk. This action is toggled by calling
MPE Capturefile() which uses the X11 utility xwd. One of the required arguments is a
frequency parameter; e.g. if this parameter is equal to two, then an image will be captured
every other time MPE Update() is called.

The following two routines, along with their Fortran bindings, were added for the
present work and are not contained in the current MPE release: MPE Fill triangle()

and MPE Fill polygon(). Since these routines are not part of the MPE library, their For-
tran and C bindings are given in Figures 1 and 2, respectively. These routines were written
because they were required by the contour shading algorithm implemented in the Fortran90
module. It was a relatively simple matter to write these two functions because they are
essentially just wrappers around functions contained in the X11 graphics library. Finally,
there are a few routines which are available in the MPE library but currently do not have
Fortran bindings. These routines provide functionality for drawing character strings and
providing input via the mouse.

2.2 Portability and Language Compatability Issues

In general, the MPE graphics library is portable. Unfortunately for the Fortran programmer,
the main sources of dependency on a speci�c operating system are found in the Fortran

3 of 22

Using the MPE Graphics Library

subroutine MPE_Fill_polygon(handle, nvertx, x, y, color, mpe_err)

integer handle ! handle for MPE X11 window

integer nvertx ! number of vertices in polygon

integer, dimension(nvertx):: x, y ! screen coordinates of vertices

integer color ! color with which to fill polygon

integer mpe_err ! MPE error code

subroutine MPE_Fill_triangle(handle, x1, y1, x2, y2, x3, y3, &

color, mpe_err)

integer handle ! handle for MPE X11 window

integer x1, y1, x2, y2, x3, y3 ! triangle vertices

integer color ! color with which to fill triangle

integer mpe_err ! MPE error code

Figure 1: Fortran bindings for the new MPE graphics routines.

int MPE_Fill_polygon(handle, nvertx, x, y, color)

MPE_XGraph handle;

int *x, *y;

int nvertx;

MPE_Color color;

int MPE_Fill_triangle(handle, x1, y1, x2, y2, x3, y3, color)

MPE_XGraph handle;

int x1, y1, x2, y2, x3, y3;

MPE_Color color;

Figure 2: C bindings for the new MPE graphics routines.

4 of 22

Using the MPE Graphics Library

Fortran C
Unicos M/K AIX IRIX

call foo() void FOO() void foo() void foo ()

Table 2: How to name a C function when called from Fortran.

bindings. For example, Table 2 illustrates how a C function must be named on di�erent
platforms when called from Fortran. Note that the C compiler is sensitive to the text
case (i.e. upper or lower) and sometimes the Fortran compiler appends an underscore to
the function name. Another source of dependency is associated with the fact that the
Fortran language speci�es call-by-reference, whereas C speci�es call-by-value when passing
arguments. In other words, an argument to a C function is always a value, whereas an
argument to a Fortran subroutine is always an address to a value. This means that the
arguments to a C function which is called from Fortran must always be a pointer, so that
it represents an address that can be passed by Fortran.

A portability issue arises when a pointer is converted to an integer (e.g., for passing the
graphics handle back to the Fortran caller, as is done in the MPE Open graphics() function).
Under the 64-bit IRIX ABI, a long int is required to hold the address contained in a
pointer. On other operating systems, a standard int may su�ce.

Finally, there is an include �le, mpef.h, which contains parameter de�nitions required
by the MPE library. At the time of this writing, the �le which is included in the o�cial
distribution is not compatible with both free-form Fortran90 and old-style, �xed-form For-
tran77 source �les. The modi�cations to remedy this are simple, and consist of altering the
comment and line continuation syntax. A modi�ed version of this �le is included with the
module distribution.

The relationship of the MPE graphics library with a �nite element application, MPI, and
the X11 library is illustrated schematically in Figure 3. At the lowest level, the X11 system
library is called by the MPE routines to perform the actual drawing and display. The MPI
message-passing library may be needed at more than one level. First, it is needed at the
highest level by the �nite element application to perform the communication required for the
simulation. Next, it may be required by the solution contour calculator in order to determine
a global bounding box for the simulation domain, solution extrema, etc. (This is somewhat
of a philosophical issue. In the module described in this report, this communication is
performed by the �nite element application and is passed to the contour calculator.) Finally,
MPI is not currently required by the MPE graphics library but may be in the future in order
to support collective operations [2].

3 A Fortran90 module

The module described in this work, mpe gfx.f90 is presented as a simple example of how to
use the MPE graphics library. It is hoped that it will be deemed useful to other applications
programmers, either in and of itself or as a template for the construction of other modules.
Towards this end, the complete module is listed in the Appendix. The problem statement
that the module addresses is as follows: given a scalar �eld de�ned on an unstructured, two-

5 of 22

Using the MPE Graphics Library

X11 system

library

MPE_graphics

application

finite element

MPI library

to MPE_graphics

Fortran binding

calculator

solution contour

Figure 3: Relationship of MPE graphics library with other application components.

6 of 22

Using the MPE Graphics Library

dimensional, triangular mesh which is distributed among many processors, draw a colored
contour representation of the associated surface. This plot could be drawn at every time step
of a distributed-memory, time-dependent calculation in order to observe the time evolution
of the solution as it is calculated.

There are two user-de�ned, integer parameters which must be set at compile time. The
�rst, rkind, is the Fortran90 \kind" to be used for real data. For example, set kind = 8 to
obtain 64-bit real variables. The second parameter, mpe screen max, de�nes the maximum
edge length (in pixels) of the X-window in which the plot will be drawn.

The module has three subroutines which may be called by the user: init mpe gfx(),
finish mpe gfx(), and mpe cnt(). The bindings for these routines are given in Figure 4.

Subroutine init mpe gfx() is a wrapper around MPE Open graphics(), and also per-
forms some preprocessing. The basic algorithm is as follows:

1. obtain the X-window DISPLAY environment variable

2. compute size of X-window in which to display plot

3. allocate integer arrays to store the screen coordinates

4. convert from real-valued (x; y) coordinates to screen coordinates

5. call MPE Open graphics()

6. optionally call MPE Capturefile()

The X-window size in step 2 above is determined from the value of mpe screen max and
the computed aspect ratio of the given domain. The allocated arrays in step 3 are de�ned
in the module header as private, so that they cannot be accessed by routines outside of
the module. The call to MPE Open graphics() actually opens the X-window on the display
screen.

Next, the main routine is mpe cnt(), which performs the following steps:

1. allocate array to hold color map

2. call MPE Make color array()

3. �ll X-window with white

4. draw mesh boundaries

5. loop over each triangle

(a) loop over the contour values

(b) set color for this contour

(c) draw contours for this triangle

6. call MPE Update()

7 of 22

Using the MPE Graphics Library

subroutine init_mpe_gfx(capture, npoints, comm, myid, x, y, &

xmin, ymin, xmax, ymax)

logical capture ! if true, then capture plots to files

integer npoints ! local number of grid points

integer comm ! MPI communicator.

integer myid ! rank of this process.

real(kind=rkind), dimension(npoints):: x,y ! real coords of local grid

real(kind=rkind):: xmin, xmax, ymin, ymax ! bounding box of global grid

subroutine mpe_cnt(ifill, npoin, ntri, nedge, nvalues, elist, &

nodes, prop, testval)

integer ifill ! if 0 draw colored lines, else

! draw color-filled plot

integer npoin ! number of points in local grid

integer ntri ! number of triangles in local grid

integer nedge ! number of boundary edges in local grid

integer nvalues ! number of contour values to draw.

real(kind=rkind):: prop(npoin) ! array to contour

integer:: nodes(3,ntri) ! triangle list

integer:: elist(2,nedge) ! boundary edge list

real(kind=rkind):: testval(nvalues) ! contour values to test for

subroutine finish_mpe_gfx

!note: no arguments.

Figure 4: Fortran90 bindings for user-callable routines in the module, listed in the order in
which they should be called.

In step 3 above, the window is painted white in order to clear the plot from a previous time
step. The contours may be drawn in step 5c in one of two ways: either as colored contour
lines or as color-�lled polygons. This action is determined at runtime via an argument
of mpe cnt(). The contour algorithm is very simple: for each triangle in the mesh, the
property values at the vertices are compared with each of the given contour values. The
color is set according to the active contour value, and contours are drawn if the test value
lies between two vertex values. A call to MPE Update() after each processor has drawn its
portion of the domain ensures that the plot bu�er is
ushed before the next timestep.

After all plots have been made, a call to finish mpe gfx() deallocates the screen coor-
dinate arrays and closes the plot window by a call to MPE Close graphics().

8 of 22

Using the MPE Graphics Library

4 Image Conversions

As stated above, the MPE Capturefile() routine is used to determine if displayed images
will be saved to individual �les in the xwd format. Since it may require several hours of
compute time in order to complete a program's execution, having such a record of graphical
output would allow a post mortem review of generated data. There are many tools and
programs available that are able to view the xwd format and these may be su�cient.

However, if you are unable to view xwd �les, the following subsections give several pos-
sible methods of converting these �les to a desirable and compatible format. Descrip-
tions and examples of two major tools, namely dmconvert and the Image Tools suite, will
be given. The former is a standard utility available on SGI workstations and the lat-
ter is available from the San Diego Supercomputer Center (SDSC) by anonymous FTP
at ftp://ftp.sdsc.edu/pub/sdsc/graphics/imtools/ in source or pre-compiled binary
form. Full details of all the tools discussed below are available within man pages.

For sake of example, we shall assume that twenty xwd �les have been generated. These
�les are named flick000.xwd, flick001.xwd, : : :, flick019.xwd.

4.1 Converting Single Images

4.1.1 dmconvert

The dmconvert utility on SGI workstations is able to convert between 38 di�erent graph-
ical image formats. There are restrictions on some formats which only allow them to be
exclusively used as either input or output. These restrictions are noted on the man page for
dmconvert.

The command to convert the �rst example xwd �le into a GIF �le would be,

dmconvert -f gif -p video flick000.xwd flick000.gif

where the -f gif denotes the image format type to be converted to, -p video denotes the
track type to convert (audio is the other possibility), and flick000.xwd and flick000.gif

are the input and output �les, respectively.
One caveat that must be mentioned: in our experiments with the dmconvert utility, all

converted �les came out in grayscale. That is, while the xwd �le had all the colors present
that were displyed during program execution, after running them through the conversion
process, the �les were rendered in black, white and shades of gray. We remark that some
combination of command line options currently unknown to us may correct this problem.

4.1.2 imconv

The imconv tool within the SDSC Image Tools suite supports slightly fewer image formats
than dmconvert. (The imformats utility is used to list out all available formats.) However,
in our experiments with the suite, all of the target image conversions from the xwd format
were able to preserve the colors found in the original image.

The command to convert the �rst example xwd �le into a GIF �le would be,

imconv -infile flick000.xwd -outfile flick000.gif

9 of 22

Using the MPE Graphics Library

where -infile and -outfile are optional and would only be needed if the input and output
�le names were embedded within a list of command line arguments.

4.2 Converting Multiple Images

4.2.1 imcat

The imcat utility concatenates multiple image �les into a single �le. Most likely, the format
for such a target �le will be Tagged Image File Format (tiff) or Hierarchical Data File
(hdf). The command to concatenate all of the example xwd �les into a TIFF �le would be,

imcat -frames 0-19 flick%03d.xwd -outfile flicks.tiff

where -frames 0-19 flick%03d.xwd is an example of the implicit �le naming scheme used
in utilities of the Image Tools suite. This implicit naming convention is described in more
detail below.

4.2.2 imstoryboard

The imstoryboard is able to arrange a set of image �les into a single image �le. Individual
input images are placed into a storyboard (or grid) ordering within the output �le. This
output would be useful to view an entire set of generated images and also be able to track
the progression of images through time.

The command to create a GIF storyboard containing the complete set of example xwd
�les would be,

imstoryboard -frames 0-19 flick%03d.xwd -outfile flickstory.gif

where -frames 0-19 flick%03d.xwd is an example of the implicit �le naming scheme.
There are additional
ags and command arguments that control the size, shape and place-
ment of images within the grid framework.

The special character code \%d" is used to de�ne a multiple �le name template in
some of the Image Tools utilities. This code, much like the C language printf output edit
descriptor, is replaced by the range of numbers speci�ed in the -frames argument. The
number of digits used in this replacement is controllable by the user. For example, the %03d
used above speci�es a zero-�lled, three-digit output. This corresponds to the �le names of
the example input image �les.

4.2.3 Making Movies

Besides converting from one image format to another, the dmconvert tool is able to con-
catenate multiple images into a an animated presentation. Thus, it would be possible to
convert the entire set of example xwd image �les into either an AVI, MPEG, QuickTime or
SGI movie format. However, in our experiments with the dmconvert utility, we were unable
to create converted �les with the colors contained in the original xwd �les.

We were able to convert color rgb �les from imconv and use dmconvert to create a color
movie �le. The following process would be used to make a MPEG movie of all the example
xwd �les:

10 of 22

Using the MPE Graphics Library

#/bin/csh -f

foreach file (*.xwd)

set rootname=$file:r

imconv $rootname.xwd $rootname.rgb

end

Figure 5: xwd to rgb conversion script

1. Convert all xwd �les to rgb �les. Since the imconv can only work with a single input
and output �le at one time, the script �le shown in Figure 5 , when executed, will
convert all �les su�xed with xwd into correspondingly named rgb �les.

2. Convert all rgb �les to a single MPEG movie �le. the command to do this would be,

dmconvert -f mpeg1v -p video flick0##.rgb flick.mpg

where flick0##.rgb is a template for multiple �les named with a sequential num-
bering scheme. The string of \#" characters in the template indicates the maximum
size of the �eld to replaced by integers in sequence, left-padded with zeros to the �eld
length, starting at zero (0) and incremented by one (1). These sequential �le names
are used in numerical order until no more �les match the template. Thus, the template
given above would match the �les flick000.rgb to flick099.rgb.

5 Summary

A brief description of how the MPE graphics library may be used to observe the time
evolution of a distributed-memory, MPI-based simulation has been presented. The MPE
library is small, and is therefore relatively easy to learn. In particular, a Fortran90 module
which draws contours of a three-dimensional surface on unstructured triangular meshes has
been written as an example. This module, which is listed in the Appendix, is available
at http://www.erc.msstate.edu/~swb/Tools. A brief overview on image �le conversion
and animation has also been presented. In particular, we have described how xwd image
�les which were obtained via the MPE Capturefile() function may be animated for later
viewing.

A potentially interesting application of this library lies in the area of remote visualiza-
tion. Because the drawing primitives are based on the ubiquitous X11 system, they can be
displayed on practically any hardware. The X11 library has been ported to both Macin-
tosh and Intel-based personal computers, and is included with virtually all Unix operating
systems. Furthermore clients can be reasonably displayed over telephone connections with
modern, high-speed (e.g. 19,200 baud) modems.

It is unfortunate that there is so little documentation on the MPE library. If a user's
guide were included with the distribution, or made available at the MPICH homepage
(http://www.mcs.anl.gov/mpi/mpich), then we believe that the existence and utility of
this library would be more widely appreciated.

11 of 22

Using the MPE Graphics Library

References

[1] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel

Programming with the Message-Passing Interface. MIT Press, London, 1994.

[2] MPE open graphics unix man page. MPE Graphics Library Unix Programmer'sManual.

12 of 22

Using the MPE Graphics Library

Appendix

module mpe_gfx

implicit none

include 'mpef.h'

integer, parameter :: rkind = 8 ! kind of real data

integer, private, parameter :: mpe_screen_max = 1000 ! max window edge length

! ---

! end of user-initialized data

integer, private :: mpe_comm ! MPI communicator.

integer, private :: mpe_myid ! rank of this process.

integer, private :: l_winx ! length of window in x

integer, private :: l_winy ! length of window in y

integer mpe_err ! error code from mpe package

real(kind = rkind), private :: gxmin, gxmax, gymin, gymax ! bounding box of

! global grid

integer (kind = 8), private :: mpe_handle ! graphics handle for

! MPE gfx routines.

integer, private, allocatable, dimension(:) :: mpe_xs !screen x-coords

integer, private, allocatable, dimension(:) :: mpe_ys !screen y-coords

contains

! begin init_mpe_gfx

subroutine init_mpe_gfx(capture, npoints, comm, myid, &

x, y, xmin, ymin, xmax, ymax)

logical capture ! if true, then capture plots to files

integer npoints ! local number of grid points

integer comm ! MPI communicator.

integer myid ! rank of this process.

real(kind = rkind), dimension(npoints) :: x,y ! real coords of local grid

real(kind = rkind) :: xmin, xmax, ymin, ymax ! bounding box of global grid

real(kind = rkind) :: xdis, ydis

character(len=81) :: xdisplay ! DISPLAY environment variable

gxmin = xmin

gymin = ymin

gxmax = xmax

gymax = ymax

mpe_comm = comm

mpe_myid = myid

! allocate the screen coordinate arrays

13 of 22

Using the MPE Graphics Library

allocate(mpe_xs(npoints), mpe_ys(npoints))

! get the xwindow DISPLAY environment variable

call getenv("DISPLAY", xdisplay)

xdisplay = trim(xdisplay)//char(0) ! append the null character for C

! transform from physical coordinates to screen coordinates

xdis = gxmax - gxmin

ydis = gymax - gymin

! figure the X window sizes

if(xdis > ydis) then

l_winx = mpe_screen_max

l_winy = ydis*l_winx/xdis

else

l_winy = mpe_screen_max

l_winx = xdis*l_winy/ydis

end if

mpe_xs(1:npoints) = (x(1:npoints) - gxmin)/xdis*l_winx

mpe_ys(1:npoints) = (y(1:npoints) - gymin)/ydis*l_winy

l_winx = 1.1*l_winx

l_winy = 1.1*l_winy

! open the mpe gfx package

call mpe_open_graphics(mpe_handle,mpe_comm, xdisplay, &

-1,-1, l_winx, l_winy, 0, mpe_err)

if(capture) call MPE_Capturefile(mpe_handle, "flick",1,mpe_err)

end subroutine init_mpe_gfx

! begin finish_mpe_gfx

subroutine finish_mpe_gfx

deallocate(mpe_xs,mpe_ys)

call mpe_close_graphics(mpe_handle,mpe_err)

end subroutine finish_mpe_gfx

! begin mpe_cnt

subroutine mpe_cnt(ifill, npoin, ntri, nedge, nvalues, elist, &

nodes, prop, testval)

integer ifill ! if 0 draw colored lines, else

! draw color-filled plot

integer npoin ! number of points in local grid

integer ntri ! number of triangles in local grid

integer nedge ! number of boundary edges in local grid

14 of 22

Using the MPE Graphics Library

integer nvalues ! number of countour values to draw.

real(kind=rkind) :: prop(npoin) ! array to contour

integer :: nodes(3,ntri) ! triangle list

integer :: elist(2,nedge) ! boundary edge list

real(kind=rkind) :: testval(nvalues) ! contour values to test for

!---

! Local Variables:

real(kind=rkind) :: aaa(3)

integer li, lo

real(kind=rkind) :: xmin, xmax, ymin, ymax, pmin, pmax

real(kind=rkind) :: xmin1, xmax1, ymin1, ymax1

real(kind=rkind) :: percent, xdis, ydis

integer ileft, iright, ibot, itop

integer icnt, ie

integer ip1, ip2, ip3

real(kind=rkind) :: slope

real(kind=rkind) :: xstr, ystr, dystr

integer leng

character*40 string

integer ichrlen

integer shade

integer xtri(3), ytri(3)

integer, allocatable, dimension(:) :: colours ! color array

pmin = minval(prop(1:npoin))

pmax = maxval(prop(1:npoin))

! figure testvalues

if (nvalues .lt. 0) then

nvalues = -nvalues

end if

allocate(colours(0:nvalues))

! clear the screen

if(0 == ifill .and. 0 == mpe_myid) then

call MPE_Fill_rectangle(mpe_handle, 0, 0, l_winx, l_winy, &

MPE_WHITE, mpe_err)

call mpe_update(mpe_handle,mpe_err)

end if

! set the colormap

call MPE_Make_color_array(mpe_handle, nvalues, colours, mpe_err)

if(mpe_err /= 0)then

write(*,*)'mpe_err: ',mpe_err

end if

! draw in the boundaries

15 of 22

Using the MPE Graphics Library

do ie = 1, nedge

ip1 = elist(1,ie)

ip2 = elist(2,ie)

! draw the edge

call MPE_Draw_line(mpe_handle, mpe_xs(ip1), mpe_ys(ip1), &

mpe_xs(ip2), mpe_ys(ip2), MPE_BLACK, mpe_err)

end do

! loop over the elements

if(0 == ifill) then

do ie = 1, ntri

! get the index of each node

ip1 = nodes(1,ie)

ip2 = nodes(2,ie)

ip3 = nodes(3,ie)

xtri(1) = mpe_xs(ip1)

ytri(1) = mpe_ys(ip1)

aaa(1) = prop(ip1)

xtri(2) = mpe_xs(ip2)

ytri(2) = mpe_ys(ip2)

aaa(2) = prop(ip2)

xtri(3) = mpe_xs(ip3)

ytri(3) = mpe_ys(ip3)

aaa(3) = prop(ip3)

call cline(aaa,xtri,ytri,testval,nvalues,colours)

end do

else

do ie = 1, ntri

! get the index of each node

ip1 = nodes(1,ie)

ip2 = nodes(2,ie)

ip3 = nodes(3,ie)

xtri(1) = mpe_xs(ip1)

ytri(1) = mpe_ys(ip1)

aaa(1) = prop(ip1)

xtri(2) = mpe_xs(ip2)

ytri(2) = mpe_ys(ip2)

aaa(2) = prop(ip2)

xtri(3) = mpe_xs(ip3)

ytri(3) = mpe_ys(ip3)

aaa(3) = prop(ip3)

call cfill(aaa,xtri,ytri,testval,nvalues,colours)

end do

end if

call mpe_update(mpe_handle,mpe_err)

end subroutine mpe_cnt

! begin cline

16 of 22

Using the MPE Graphics Library

subroutine cline(aaa,xtri,ytri,testval,nval1,colours)

! This routine finds all the color contours for a triangle.

! This routine was written by modifying the above QTRIANG.

! The difference is that it generates standard contour lines instead

! of colored polygons.

! This is done by finding the number of intersections at each side

! then do the following:

! CASE 1: No intersection -> do nothing

! CASE 2: One intersection -> do nothing

! CASE 3: Two intersection or if two nodes have same value ->

! plot the line

! CASE 4: Three intersection ->

! Find the duplicate pt and plot the other two

! CASE 5: All three nodes are the same value and are approximately

! the same as a testvalue

! variables

! aaa(3) - scalar values of the triangle

! xtri(3),ytri(3) - the coordinates of the triangle

! xint(2),yint(2) - intersections along a side

! val(2) - values found at the intersection-aal 2/25/91:not used anymore

! testval(nval1) - values to test for intersections

! inod - start node for a side

! jnod - end node for at side

! ival - the number of the contour

! nval - max number of contours

! nval1 - input max number of contours

! nint - the number of intersections found along a side

! v1,v2 - values at the vertices along a side

! vmax,vmin - the min and max contour values

! dv - difference between v1 and v2

integer colours(*)

integer nval1

real(kind=rkind) aaa(3)

integer xtri(3),ytri(3),xint(3),yint(3)

real(kind=rkind) testval(nval1),v1,v2,dv

integer inod,jnod,ival,nint,nval

! check to see if nval1 is o.k.

nval = nval1

if (1 == nval) nval = 2

do ival = 1,nval

! check all 3 nodes of triangle for intersections

!

17 of 22

Using the MPE Graphics Library

nint = 0

do inod = 1,3

jnod = mod(inod,3)+1

v1 = aaa(inod)

v2 = aaa(jnod)

if((abs(v1-v2) <= 1.0e-07) .and. &

(abs(v1-testval(ival)) <= 1.e-07)) then

! set the proper color

call MPE_Draw_line(mpe_handle, xtri(inod), ytri(inod), &

xtri(jnod), ytri(jnod), colours(ival), mpe_err)

exit

end if

if ((v1-testval(ival))*(testval(ival)-v2) > 0.0) then

nint = nint + 1

dv = v2 - v1

if (abs(dv) > 1.e-08*testval(ival)) then

xint(nint) = xtri(inod) + (testval(ival)-v1)/dv * &

(xtri(jnod) - xtri(inod))

yint(nint) = ytri(inod) + (testval(ival)-v1)/dv * &

(ytri(jnod) - ytri(inod))

end if

endif

end do

! Now evaluate cases

! case 1 - no intersections:do nothing

! case 2 - 1 intersection:do nothing

! case 3 - 2 intersections: plot the line

if(nint==2) then

! set the proper color

call MPE_Draw_line(mpe_handle, xint(1),yint(1), &

xint(2),yint(2), colours(ival), mpe_err)

endif

! case 4 - three intersections:find duplicate point

! and plot the other two.

99 continue

if(nint==3) then

if(xint(1)/=xint(2) .and. yint(1)/=yint(2)) then

call MPE_Draw_line(mpe_handle, xint(1),yint(1), &

xint(2),yint(2), colours(ival), mpe_err)

else

18 of 22

Using the MPE Graphics Library

call MPE_Draw_line(mpe_handle, xint(1),yint(1), &

xint(3),yint(3), colours(ival), mpe_err)

endif

end if

! call mpe_update(mpe_handle,mpe_err)

end do

end subroutine cline

! begin cfill

subroutine cfill(aaa,xtri,ytri,testv,nval1,colours)

! This routine finds all the color contours for a triangle.

! This is done by finding the number of intersections at each side

! then do the following:

! CASE 1: No intersection -> do nothing

! CASE 2: No intersection but side is in range ->

! get both vertices from triangle in directed order

! CASE 3: Two intersection ->

! decide if in directed order

! CASE 4: One intersection ->

! get correct vertex from triangle

! decide if in directed order

! Directed order means that the vertices of the polygon for the color

! contour are in the same direction as the triangle. This is to avoid

! getting Z's rather than rectangles.

! variables

! aaa(3) - scalar values of the triangle

! xtri(3),ytri(3) - the coordinates of the triangle

! xver(6),yver(6) - the coordinates of the polygon for the color contour

! xint(2),yint(2) - intersections along a side

! val(2) - values found at the intersection

! testval(2) - values to test for intersections

! inod - start node for a side

! jnod - end node for at side

! ival - the number of the contour

! nval - max number of contours

! nval1 - input max number of contours

! nint - the number of intersections found along a side

! v1,v2 - values at the vertices along a side

! vmax,vmin - the min and max contour values

! dv - difference between v1 and v2

! ja - counter for intersection checking

! nver - the number of vertices for the polygon for the color contour

! ordered - if the intersection locations are in directed order

! found - if there are intersection found along a side

19 of 22

Using the MPE Graphics Library

integer colours(*)

integer inod,jnod,ival,nint,nval,nval1,nver,ja

integer istart,iend

logical ordered,found

real(kind=rkind) aaa(3)

integer xtri(3),ytri(3),xint(2),yint(2), xver(6), yver(6)

real val(2),testval(2),v1,v2,dv

!!aal 10/18/90 added testv dimensioned at nval

real(kind=rkind) testv(nval1)

!!aal 10/18/90

! check to see if nval1 is o.k.

nval = nval1

if (nval == 1) nval = 2

do ival = 1,nval-1

testval(1) = testv(ival)

testval(2) = testv(ival+1)

! testval(1) = vmin + float(ival-1)/float(nval-1)*(vmax-vmin)

! testval(2) = vmin + float(ival)/float(nval-1)*(vmax-vmin)

nver = 0

do inod = 1,3

nint = 0

jnod = mod(inod,3)+1

v1 = aaa(inod)

v2 = aaa(jnod)

found = .false.

do ja = 1,2

if ((v1-testval(ja))*(testval(ja)-v2) > 0.0) then

found = .true.

nint = nint + 1

val(nint) = testval(ja)

dv = v2 - v1

if (abs(dv) < 1.e-6*testval(ja)) dv = 1.0

xint(nint) = xtri(inod) + (testval(ja)-v1)/dv * &

(xtri(jnod) - xtri(inod))

yint(nint) = ytri(inod) + (testval(ja)-v1)/dv * &

(ytri(jnod) - ytri(inod))

endif

end do

! Now evaluate cases

! CASE 1 and 2: No intersections

if (nint == 0) then

! check if start node is in range (CASE 2)

if ((testval(1)-v1)*(v1-testval(2)) >= 0.0) then

! case 2 side in range

ordered = .true.

20 of 22

Using the MPE Graphics Library

found = .true.

xint(1) = xtri(inod)

yint(1) = ytri(inod)

xint(2) = xtri(jnod)

yint(2) = ytri(jnod)

endif

! CASE 1 -> do nothing

! CASE 3 - Two intersections so check to see if ordered.

else if (nint == 2) then

ordered = abs(v1-val(1)) < abs(v1-val(2))

! CASE 4 - One intersection

else if ((testval(1)-v1)*(v1-testval(2)) >= 0.0) then

ordered = .false.

xint(2) = xtri(inod)

yint(2) = ytri(inod)

else

ordered = .true.

xint(2) = xtri(jnod)

yint(2) = ytri(jnod)

endif

! if intersection were found then store vertices in ver

! check to see if istart is a new vertex.

if (found) then

istart = 2

iend = 1

if (ordered) then

istart = 1

iend = 2

endif

if ((nver == 0) .or. ((xver(nver) /= xint(istart)) &

.or. (yver(nver) /= yint(istart)))) then

nver = nver + 1

xver(nver) = xint(istart)

yver(nver) = yint(istart)

endif

nver = nver + 1

xver(nver) = xint(iend)

yver(nver) = yint(iend)

endif

end do

if (nver > 0) then

if ((xver(1)==xver(nver)) .and. (yver(1)==yver(nver))) &

nver = nver - 1

call mpe_fill_polygon(mpe_handle, nver, xver,yver, &

colours(ival), mpe_err)

21 of 22

Using the MPE Graphics Library

endif

end do

end subroutine cfill

end module mpe_gfx

22 of 22

